About giannisneokleous

Giannis (pronounced Yannis) Neokleous holds a Masters degree in Computer Science from Stanford University and is currently working as a software engineer at Knewton. Giannis’s main areas of interest lately are, but are not limited, in the fields of distributed systems, large scale data processing and programming languages. You can follow him @yiannis_n and also find him at www.giann.is.

Cassandra and Hadoop – Introducing the KassandraMRHelper

Here at Knewton we use Cassandra for storing a variety of data. Since we follow a service-oriented architecture, many of our internal services are backed by their own data store. Some of the types of data we store include student events, recommendations, course graphs, and parameters for models. Many of these services and clusters are often deployed in more than two environments, increasing the total number of Cassandra clusters deployed.

On the Analytics team at Knewton we are constantly working on improving a lot of the inferential models that go into our platform, while at the same time building new ones. This often involves munging a lot of data in short periods of time. For a lot of our ad-hoc analysis we use a data warehouse by which analysts can query and extract data relatively quickly. One of the challenges we’ve faced at Knewton — and specifically in Analytics — involved how to go about populating our data warehouse with data from Cassandra clusters that predated our data warehouse. To solve this problem, we implemented an internal library for bulk extracting data out of Cassandra into Hadoop with zero hits to the Cassandra cluster. A few months later we opened sourced it here and called it the KassandraMRHelper.

KassandraMRHelper takes a slightly different approach than the constructs contained in the Hadoop package in the Cassandra source code (e.g. AbstractColumnFamilyInputFormat), in that it doesn’t require a live Cassandra cluster to extract the data from. This allows us to re-run map-reduce jobs multiple times without worrying about any performance degradation of our production services. This means that we don’t have to accommodate more traffic for these offline analyses, which keeps costs down.

How does it work?
The KassandraMRHelper includes specialized Input Formats and Record Readers for SSTables. First, here’s a little bit about SSTables:

SSTables are immutable; once they’re written they never change.
SSTables can exist independently of each other but collectively they form the complete data set.
SSTables consist of 4-5 parts depending on which version you’re using:

There are 4 to 5 different components:

  • Data.db files store the data compressed or uncompressed depending on the configuration
  • Index.db is an index to the Data.db file.
  • Statistics.db stores various statistics about that particular SSTable (times accessed etc)
  • Filter.db is a bloomfilter that’s loaded in memory by the cassandra node that can tell it quickly whether a key is in a table or not.
  • CompressionInfo.db may or may not be there depending on whether compression is enabled for a ColumnFamily. It contains information about the compressed chunks in the Data.db file.

Data in columns and rows are essentially key value pairs, with rows as the keys and columns as values to the rows. The columns are also key value pairs consisting of a name and a value.

Given how data are stored, Cassandra is in fact a really good fit for MapReduce. The same partitioning schemes that Cassandra uses can also be used in MapReduce. Columns and rows can be the keys and values that get passed in the Mappers or Reducers in a MapReduce job.

Some key components of KassandraMRHelper are:

  • The SSTableInputFormat: The SSTableInputFormat describes how to read the SSTables and filters through all the components and ColumnFamilies, keeping only what’s necessary for processing using a custom PathFilter. There are two types of SSTableInputFormats depending on how you want to represent key/value pairs in MapReduce. The SSTableColumnInputFormat constructs an SSTableColumnRecordReader in which keys in the Mapper represent the row keys in Cassandra and values represent a single column under that row key. Similarly the SSTableRowInputFormat constructs an SSTableRowRecordReader in which keys in the Mappers are the Cassadndra row keys and values are column iterators over all the columns under a single row key.
  • The SSTableRecordReader: It internally uses an SSTableScanner and a Descriptor similar to the one contained in recent version of Cassandra but with backwards compatibility to identify all the parts of an SSTable. As described previously, subclasses of the SSTableRecordReader can represent values as single columns under a row or entire column iterators.
  • The SSTableColumnMapper: This abstract mapper inherits from the default Hadoop mapper but adds a bit more structure to deal with the ByteBuffers and columns contained in the SSTables. It can also skip tombstoned columns.
  • The SSTableRowMapper: This is similar to the mapper above that deals with column iterators.

Setting up a MapReduce job for reading a Cassandra cluster becomes very simple. The only missing piece is finding an easy way to get all the SSTables into a Hadoop cluster. At Knewton we found Netflix’s Priam to be a good match. Priam backs up our Cassandra cluster multiple times a day into S3 making it really easy to transfer the data to Elastic MapReduce (EMR).

This simple MapReduce job shows a complete example job that consumes student event data from backed up Cassandra SSTables. The example can also be found here.

public static void main(String[] args) throws Exception {
  Configuration conf = new Configuration();
  Job job = new Job(conf);
      RandomPartitioner.class.getName(), job);
  SSTableInputFormat.setComparatorClass(LongType.class.getName(), job);
  SSTableInputFormat.setColumnFamilyName("StudentEvents", job);
  SSTableInputFormat.addInputPaths(job, args[0]);
  FileOutputFormat.setOutputPath(job, new Path(args[1]));
public class StudentEventMapper extends SSTableColumnMapper
      <Long, StudentEvent, LongWritable, StudentEventWritable> {
  public void performMapTask(Long key, StudentEvent value, Context context) {
    context.write(new LongWritable(getMapperKey(),
                  new StudentEventWritable(studentEvent));
  protected Long getMapperKey(ByteBuffer key, Context context) {
    ByteBuffer dup = key.slice();
    Long studentId = dup.getLong();
    return studentId;
  protected StudentEvent getMapperValue(IColumn iColumn, Context context) {
    return getStudentEvent(iColumn, context);

Notice that the mapper extends from a specialized SSTableColumnMapper which can be used in conjunction with the SSTableColumnRecordReader.

The example above uses the identity reducer to simply write the data as comma separated values by calling the toString() method on the StudentEventWritable objects. The only additional task you have to worry about in the Reducer is deduping the data, since you will probably have a replication factor of > 1.

Automating this job becomes an easy task given that SSTables are immutable and older tables don’t have to be read if they were already read once. Enabling incremental snapshots can also help here.


If you want to get started on using the KassandraMRHelper you can check out the code here: https://github.com/Knewton/KassandraMRHelper. Contributions are more than welcome and encouraged.

If you’re interested in additional topics in Cassandra and Hadoop you should check out the presentation on bulk reading and writing Cassandra using Hadoop here with the slides shared here.