Chapter 1: Algebra Reference

1.1 Properties of Real Numbers and Polynomials

- Properties of Real Numbers
 - Use the following properties of real numbers: inverse and identity
 - Use the following properties of real numbers: commutative, associative, and distributive

- Polynomials
 - Add and subtract polynomials
 - Multiply binomials together
 - Multiply polynomials together
 - Perform operations with polynomials of several variables

1.2 Factoring

- Factoring Quadratics
 - Factor the greatest common factor of a polynomial
 - Factor a trinomial
 - Factor a trinomial by grouping
 - Factor a perfect square trinomial
 - Factor a difference of squares

- Other Factoring Techniques
 - Factor a cubic by grouping
 - Factor the sum and difference of cubes
 - Factor expressions using fractional or negative exponents
 - Factor expressions using greatest common factor and other technique

1.3 Rational Expressions

- Operations on Rational Expressions
 - Simplify rational expressions
 - Multiply rational expressions
 - Divide rational expressions
 - Add and subtract rational expressions

1.4 Equations

- Linear Equations
 - Identify identity, conditional, and inconsistent equations
 - Solve equations in one variable algebraically, variable just on one side
 - Solve equations in one variable algebraically, variable on both sides

- Quadratic Equations
 - Solve quadratic equations by factoring, leading coefficient 1
 - Solve quadratic equations by factoring, leading coefficient > 1
 - Solve quadratic equations by using the quadratic formula
Rational Equations
- Solve a rational equation, monomials in denominator
- Solve a rational equation, binomials in denominator
- Solve a rational equation, requires factoring to find least common denominator

1.5 Inequalities
- Linear Inequalities
 - Use interval notation
 - Use properties of inequalities
 - Solve simple inequalities in one variable algebraically
- Quadratic and Rational Inequalities
 - Solve quadratic inequalities in one variable, graph the solution set, and express the solution set using interval notation
 - Solve inequalities that involve rational expressions, graph the solution sets, and express the solution set using interval notation

1.6 Exponents
- Properties of Exponents
 - Understand exponent notation
 - Use the product rule of exponents
 - Use the quotient rule of exponents
 - Use the power rule of exponents
- Advanced Properties of Exponents
 - Use the negative and zero exponent rule
 - Find the power of a product
 - Find the power of a quotient
 - Simplify exponential expressions

1.7 Radicals
- Simplify Radicals
 - Evaluate square roots
 - Use the product rule to simplify square roots
 - Use the quotient rule to simplify square roots
- Operations with Radicals
 - Add and subtract square roots
 - Rationalize denominators with a monomial denominator
 - Rationalize denominators using the conjugate

Chapter 2: Linear Functions
2.1 Slopes and Equations of Lines
- Cartesian Coordinate System
 - Plot ordered pairs in a Cartesian coordinate system
 - Graph equations by plotting points
Identify Slopes and Intercepts
- Find the slope of a line given two points
- Understand the relationship between the slope and y-intercept of a line and its equation
- Find x-intercepts and y-intercepts

Finding Linear Equations
- Find equation of a line, in slope-intercept form, given slope and one point (point-slope formula)
- Find equation, in slope-intercept form, of a line passing through two given points
- Given slope and intercept, find the equation of a line and write it in standard form
- Find the equation of vertical and horizontal lines

Graphing Linear Equations
- Graph a linear equation using the slope and the origin

Parallel and Perpendicular Lines
- Given the equations of two lines, determine whether their graphs are parallel or perpendicular
- Write the equation of a line parallel to a given line
- Write the equation of a line perpendicular to a given line

2.2 Linear Functions and Applications
- Linear Functions
 - Understand function notation
 - Evaluate a linear function at a value
- Applications of Linear Functions
 - Solve supply and demand problems using linear functions
 - Solve cost analysis problems using linear functions
 - Solve break even analysis problems using linear functions

2.3 The Least Squares Line
- The Least Squares Line
 - Find the linear regression equation given a list of data points
 - Make predictions using a line of best fit
 - Find and interpret the correlation coefficient

Chapter 3: Systems of Linear Equations and Matrices
3.1 Solving Linear Systems
- Linear Systems in Two Variables
 - Solve systems of equations in two variables by graphing
 - Solve systems of equations in two variables by substitution
 - Solve systems of equations in two variables by addition
 - Identify inconsistent and dependent systems of equations containing two variables, and express the solution of dependent equations
• Linear System in Three Variables
 - Determine whether an ordered triple is a solution to a system
 - Solve systems of three equations in three variables
 - Identify inconsistent and dependent systems of equations containing three variables, and express the solution of a system of dependent equations

• Applications of Linear Systems
 - Use systems of equations to investigate profits
 - Write and solve a system of equations in two variables from a word problem

3.2 Solving Linear Systems by the Gauss-Jordan Method
• Solving Systems with Gaussian Elimination
 - Convert between a system of equations and its corresponding augmented matrix
 - Use row operations to solve a system of linear equations in two variables
 - Use row operations to solve a system of linear equations in three variables
 - Use matrices to solve applications of systems of linear equations

3.3 Operations with Matrices
• Addition and Subtraction of Matrices
 - Determine the order of a matrix and describe elements within a matrix
 - Add or subtract matrices

• Multiplication of Matrices
 - Multiply a matrix by a scalar
 - Find the sum or difference of scalar multiples
 - Multiply two matrices

3.4 Matrix Inverses and Determinants
• Determinants of Matrices
 - Find the determinant of a 2x2 matrix
 - Find the determinant of a 3x3 matrix

• Inverse and Identity Matrices
 - Understand the identity matrix and how it relates to the inverse matrix
 - Determine if a matrix is invertible using the determinant
 - Find the inverse of a 2x2 matrix
 - Find the inverse of a 3x3 matrix

• Solving Systems with Inverses
 - Solve a system of linear equations using the inverse of a 2x2 matrix
 - Solve a system of linear equations using the inverse of a 3x3 matrix

3.5 Input-Output Models
• Input-Output Matrices
 - Create an input output matrix for a given application
 - Calculate the amount of commodities produced given an input output matrix and a production matrix
• Determine the production matrix that will satisfy a given demand matrix
• Find the production of a commodity in a closed input output model

Chapter 4: Linear Programming - The Graphical Method
4.1 Graphing Linear Inequalities
 • Graphs of Linear Inequalities
 • Solve a linear inequality in two variables by graphing
 • Solve a linear system of inequalities by graphing
4.2 Solving Linear Programming Problems Graphically
 • Solving Linear Programming Problems Graphically
 • Graph a feasible region given a set of constraints
 • Find the maximum value of an objective function given constraints by graphing
4.3 Applications of Linear Programming
 • Applications of Linear Programming
 • Solve application problems using linear programming

Chapter 5: Linear Programming - The Simplex Method
5.1 Slack Variables and the Pivot
 • Finding Solutions using Initial Simplex Tableaus
 • Rewrite a linear programming problem using slack variables and create an initial simplex tableau
 • Read a solution from an initial simplex tableau
 • Find a new solution by pivoting an initial simplex tableau
5.2 Maximization and Minimization Problems
 • Solving Maximization Problems with the Simplex Method
 • Solve maximization problems using the simplex method
 • Transposing a Matrix and Finding the Dual of a Linear Programming Problem
 • Determine the transpose of a matrix
 • Determine the dual of a linear programming problem
 • Solving Minimization Problems with Duality
 • Solve minimization problems using the theorem of duality
5.3 Nonstandard Problems
 • Solving Nonstandard Problems
 • Solve a nonstandard linear programming problem
 • Solve a nonstandard linear programming application problem
Chapter 6: Mathematics of Finance

6.1 Simple Interest
- Simple Interest
 - Calculate simple interest
 - Calculate interest discounts on a discounted loan

6.2 Compound Interest
- Compound Interest
 - Calculate periodically compounded interest
 - Calculate compound interest
 - Calculate continuously compounded interest
 - Calculate effective annual yield

6.3 Annuities, Stocks, and Bonds
- Annuities
 - Calculate the value of an annuity
 - Calculate the payment needed to achieve a determined future value
- Stocks
 - Define stock terminology
 - Read a stock table

6.4 Installment Loans, Amortization, and Credit Cards
- Mortgages and Loans
 - Calculate the monthly payment and interest cost for a mortgage
 - Construct a loan amortization schedule
 - Choose the best installment loan plan
- Credit Cards
 - Recognize key features of credit cards
 - Calculate the average daily balance of a credit card
 - Determine interest to be paid on a card's next billing date

Chapter 7: Logic

7.1 Statements and Logical Connectives
- The Building Blocks of Logic
 - Identify and negate simple statements
 - Identify and negate quantified statements
- Symbolic Representation of Statements
 - Identify logical connectives and compound statements
 - Represent and/or/not statements in symbolic form and English
- Conditional Statements
 - Represent conditional statements in symbolic form and English
 - Write biconditional statements in symbolic form and English
 - Represent symbolic statements with parentheses using dominance of connectives
7.2 Truth Tables for Negation, Conjunction, and Disjunction

- Introduction to Truth Tables
 - Construct a truth table for a statement with a conjunction and/or a negation and determine its truth value
 - Construct a truth table for a statement with a disjunction and/or a negation and determine its truth value
 - Construct a truth table for a compound statement with a conjunction and disjunction and determine its truth value

7.3 Truth Tables for the Conditional and Biconditional

- Truth Tables for Conditional and Biconditional Statements
 - Construct a truth table for a conditional statement and determine its truth value
 - Construct a truth table for a biconditional statement and determine its truth value

- Self-Contradictions, Tautologies, and Implications
 - Identify self-contradictions, tautologies, and implications

7.4 Equivalent Statements

- Equivalent Statements and De Morgan's Equivalence Laws
 - Determine if two symbolic statements are equivalent using a truth table
 - Determine if two statements given in English are equivalent using a truth table
 - Determine if two statements are equivalent using De Morgan's laws

- Conditional States and Equivalence
 - Convert a disjunction into an equivalent conditional statement
 - Determine if two conditional statements are equivalent

7.5 Symbolic Arguments

- Drawing and Verifying Conclusions
 - Draw a conclusion from a conditional statement
 - Determine if an argument is valid using a truth table
 - Identify and validate the standard forms of arguments

7.6 Euler Diagrams and Syllogistic Arguments

- Euler Diagrams and Syllogistic Arguments
 - Identify syllogistic arguments
 - Represent a syllogistic argument with a Euler diagram
 - Determine if a syllogistic argument is valid with a Euler diagram

7.7 Switching Circuits

- Switching Circuits and Symbolic Logic
 - Convert between symbolic statements and switching circuits
 - Determine conditions for when a lightbulb will be turned on in a switching circuit
 - Determine if two switching circuits are equivalent
Chapter 8: Sets and Counting Principles

8.1 Set Concepts

- Introduction to Sets and Set Builder Notation
 - Represent a set using a written description and the roster method
 - Represent a set using set builder notation
- Set Equivalence
 - Identify the cardinal number for a set
 - Determine if two sets are equivalent
 - Determine if two sets are equal
- Types of Sets
 - Identify subsets, universal sets, and empty sets
 - Distinguish between finite and infinite sets
- Subsets and Proper Subsets
 - Identify subsets and proper subsets using set notation
 - Determine the number of subsets and proper subsets in a given set

8.2 Venn Diagrams and Set Operations

- Representing Sets with Venn Diagrams
 - Illustrate the universal set, a set, and complement of a set using a Venn diagram
 - Illustrate two sets using Venn diagram and set notation
- Set Relationships
 - Determine the complement of a set using Venn diagrams and proper set notation
 - Determine the intersection of two sets using Venn diagrams and set notation
 - Determine the union of two sets using Venn diagrams and set notation
- Set Operations
 - Perform operations on sets
 - Find the difference and cartesian product of two sets
 - Use Venn diagrams to find the result of set operations on two sets
 - Determine the cardinal number of a union of two finite sets

8.3 Venn Diagrams with Three Sets and Verification of Equality of Sets

- Construct a Venn Diagram of Three Sets
 - Perform set operations on three sets
 - Represent three sets using Venn diagrams

The Fundamental Counting Principle

- The Fundamental Counting Principle
 - Solve counting problems using the addition principle
 - Solve counting problems using the multiplication principle

8.4 Permutations and Combinations

- Permutations
 - Evaluate an expression with factorials
 - Find the number of permutations of n distinct objects using the multiplication principle
Chapter 9: Probability

9.1 Introduction to Probability

- Sample Spaces and Events
 - Determine the sample space of an experiment
 - Determine an event of an experiment

- Fundamentals of Probability
 - Compute the probability of equally likely outcomes
 - Compute the probability of equally likely outcomes in application

- Probability with Permutations and Combinations
 - Compute probability involving permutations
 - Compute probability involving combinations

- The Complement Rule and Probability
 - Use the complement rule to compute probabilities
 - Compute the probability of an event happening at least once

- Odds and Expected Value
 - Compute the expected value of an event
 - Compute odds using probability

9.2 Conditional Probability and Independent Events

- Independent Events
 - Compute the probability of the union of two events
 - Compute the probability of two independent events occurring

- Dependent Events and Conditional Probability
 - Compute the conditional probability of a dependent event occurring
 - Compute the probability of two or more dependent events occurring

9.3 Binomial Probability

- Binomial Experiments
 - Identify a binomial experiment
 - Determine the binomial probability of success in an experiment performed multiple times
 - Calculate expected value for binomial probability

9.4 Bayes’ Theorem

- Bayes’ Theorem
 - Apply Bayes’ theorem to solve an application problem
9.5 Random Variables, Probability Distributions and Expected Value

- Random Variables, Probability Distributions, and Expected Value
 - Calculate probability distribution
 - Calculate the expected value of a random variable

Chapter 10: Statistics

10.1 Sampling, Frequency Distributions, and Graphs

- Sampling and Parameters
 - Understand the definitions of population, sampling, statistic, parameter, and data
 - Identify stratified, cluster, systematic, and convenience sampling
 - Identify sampling errors and bias
 - Identify situations in which statistics can be misleading

- Frequency Distributions and Histograms
 - Construct and understand frequency tables for a set of data
 - Create and interpret histograms
 - Create and interpret stem-and-leaf plots

10.2 Measures of Central Tendency and Measures of Dispersion

- Means and Medians
 - Find the mean of a set of data
 - Find the mean from a frequency table
 - Find the median of a set of data

- Modes, Midranges, and Choosing a Measurement
 - Find the mode of a set of data
 - Find the midrange of a set of data
 - Determine whether the mean, median, or mode is the best measure of center for a data set

- Standard Deviation
 - Compute the sample variance and sample standard deviation
 - Interpret the standard deviation of a set of data

10.3 The Normal Distribution, Margins of Error, and Skewness

- The Normal Distribution
 - Understand the notation and interpret the parameters of a normal distribution
 - Compute z-scores and use them to compare values from different data sets
 - Determine if a data set is skewed

- Percentiles, Quartiles, and Margins of Error
 - Find and interpret percentiles and quartiles of a data set
 - Calculate and interpret margin of error

- Problem Solving with the Normal Distribution
 - Standardize a normally distributed random variable
 - Calculate the mean and standard deviation of a standard normal distribution
Chapter 11: Nonlinear Functions

11.1 Properties of Functions

- Functions and Function Notation
 - Identify domain and range from a set of ordered pairs
 - Determine whether a relation represents a function
- Relations and Functions
 - Determine whether a function is one-to-one
 - Use the vertical line test to identify functions
 - Use the horizontal line test to identify one-to-one functions

11.2 Quadratic Functions

- Characteristics of Parabolas
 - Determine axis of symmetry and vertex of parabolas from a graph
 - Determine x- and y-intercepts of parabolas from a graph
- Graphs of Quadratic Functions
 - Find the direction a parabola opens and its axis of symmetry and vertex from the general form of its equation
 - Identify the axis of symmetry and vertex of a parabola from its equation in standard form
 - Write the equation of a quadratic function given vertex and a point on a graph
 - Write the equation of a quadratic function given intercepts on a graph
 - Write the equation of a quadratic function in standard form given the equation in general form
- Applications of Quadratic Functions
 - Find the domain and range of a quadratic function
 - Determine the maximum and minimum values of quadratic functions
 - Find the x- and y-intercepts of a quadratic function

11.3 Transformations of Functions

- Transformations of Functions
 - Graph functions using vertical and horizontal shifts
 - Graph functions using reflections about the x-axis and the y-axis
 - Graph functions using compressions and stretches
 - Combine transformations

11.4 Polynomial and Rational Functions

- Polynomial Functions
 - Identify power functions and polynomial functions
 - Graph polynomial functions
 - Write a formula for a polynomial function from a graph
 - Determine equation of a polynomial given key information
Asymptotic Behavior of Rational Functions
- Use arrow notation to describe local behavior and end behavior of rational functions
- Identify vertical asymptotes and removable discontinuities of rational functions
- Identify horizontal and slant asymptotes of rational functions

Graphs and Applications of Rational Functions
- Find the intercepts of a rational function
- Graph rational functions
- Find the equation of a rational function from a graph

11.5 Exponential and Logarithmic Functions
- Identify and Evaluate Exponential Functions
 - Identify exponential functions
 - Evaluate exponential functions
 - Calculate continuous growth and decay
- Graphing Exponential Functions
 - Graph exponential functions
 - Graph exponential functions using transformations
- Relate Logarithms and Exponents
 - Convert from logarithmic to exponential form
 - Convert from exponential to logarithmic form
- Evaluate Logarithmic Expressions
 - Evaluate logarithms with positive integer solutions
 - Evaluate logarithms with negative integer solutions
 - Use common logarithms
 - Use natural logarithms
- Basic Properties of Logarithms
 - Understand the basic properties of logarithms
 - Use the product rule for logarithms
 - Use the quotient rule for logarithms
 - Use the power rule for logarithms
- Solve Logarithmic Equations
 - Use the definition of a logarithm to solve logarithmic equations
 - Use logarithm properties and the definition of the logarithm to solve logarithmic equations
 - Use the one-to-one property of logarithms to solve logarithmic equations
- Applications of Exponential and Logarithmic Functions
 - Model exponential growth
 - Model exponential decay
 - Applied logarithmic models
 - Choose an appropriate model for data
 - Express an exponential model in base e
Chapter 12: Markov Chains

12.1 Properties of Markov Chains

- Transitions
 - Identify transition diagrams and transition matrices
 - Create a transition diagram and matrix for a given word problem
- States
 - Find the second state of a system given a transition matrix and initial state
 - Find powers of a transition matrix
 - Solve application problems using powers of transition matrices

12.2 Regular Markov Chains

- Regular Transition Matrices and Stationary Matrices
 - Determine if a transition matrix is regular
 - Find a stationary matrix for a given transition matrix
 - Solve application problems using stationary matrices

12.3 Absorbing Markov Chains

- Absorbing States
 - Find absorbing states given a transition matrix
 - Determine if a transition matrix is for an absorbing Markov chain
 - Write a transition matrix in standard form
- Limiting Matrix
 - Find the limiting matrix for an absorbing Markov chain

Chapter 13: Limits and the Derivative

13.1 Introduction to Limits

- Limits From a Graph or Table
 - Understand the limit of a function and evaluate a limit from a table
 - Evaluate limits graphically
 - Understand the properties of limits
- Limits Analytically for Continuous and Piecewise Functions
 - Evaluate two-sided limits analytically for continuous functions
 - Evaluate limits analytically for piecewise functions
 - Evaluate limits analytically for absolute value functions
- Limits Analytically for Functions with Removable Discontinuities
 - Evaluate two-sided limits analytically for rational functions with removable discontinuities by factoring
 - Evaluate two-sided limits analytically for rational functions with removable discontinuities through expansion
 - Evaluate two-sided limits analytically for complex fractions with removable discontinuities
 - Evaluate two-sided limits analytically for rational functions that contain radicals with removable discontinuities
13.2 Infinite Limits and Limits at Infinity

- Infinite Limits
 - Evaluate limits analytically for functions with essential discontinuities
- Limits at Infinity
 - Evaluate limits of polynomial functions at infinity
 - Evaluate limits of rational functions at infinity
 - Evaluate limits of radical and exponential functions at infinity

13.3 Continuity

- Continuity and the Intermediate Value Theorem
 - Understand the definition of continuity
 - Understand types of discontinuity in rational functions
 - Understand and apply the intermediate value theorem
- Continuity of Piecewise Functions
 - Determine whether a piecewise function is continuous
 - Determine the value that makes a piecewise function continuous
- Rational and Quadratic Inequalities
 - Solve quadratic inequalities in one variable, graph the solution set, and express the solution set using interval notation
 - Solve inequalities that involve rational expressions, graph the solution sets, and express the solution set using interval notation

13.4 The Derivative

- Secant Lines and Average Rates of Change
 - Find the average rate of change given a function
 - Find the average rate of change given a table or graph
 - Find the average rate of change given a function and variable intervals
- Tangent Lines and Instantaneous Velocities
 - Determine the sign of the slope of a line tangent to a function at a given point
 - Estimate the slope of the line tangent to a point on a curve
 - Estimate the instantaneous rate of change of a function from successively closer approximations
- The Definition of the Derivative
 - Understand the limit definition of the derivative
 - Use the limit definition to find the derivative of a polynomial function
 - Use the limit definition to find the derivative of a rational function
 - Use the limit definition to find the derivative of a function with a radical

13.5 Basic Differentiation Properties

- The Power Rule and the Sum and Difference Rules
 - Use the constant, constant multiple, and power rule for monomials
 - Apply the sum and difference rules to combine derivatives
● Use the Power Rule to Explore Tangent Lines
 ● Find the equation of the line tangent to a polynomial at a point
 ● Determine where a function has a horizontal tangent
 ● Determine the points on a function when tangent lines have a given slope

13.6 Differentials
● Differentials and Finding Error
 ● Compute a differential
 ● Estimate the amount of propagated and relative error using differentials

13.7 Marginal Analysis in Business and Economics
● Marginal Cost and Revenue
 ● Compute and interpret marginal cost
 ● Compute and interpret revenue and marginal revenue
● Marginal Average Cost and Revenue
 ● Compute average cost and revenue
 ● Compute and interpret marginal average cost

Chapter 14: Additional Derivative Topics
14.1 Derivatives of Exponential and Logarithmic Functions
● Derivatives of Exponential Functions with Base e
 ● Find the derivative of an exponential function with base e
 ● Find the derivative of an exponential function with any base
● Derivatives of Natural Log Functions
 ● Find the derivative of a natural logarithmic function
 ● Use properties of logarithms to find the derivative of a natural logarithmic function
● Derivatives of Logarithmic Functions of Any Base
 ● Find the derivative of a logarithmic function that is not base e
 ● Use properties of logarithms to find the derivative of a logarithmic function that is not base e
● Logarithmic Differentiation
 ● Use logarithmic differentiation
 ● Use logarithmic differentiation with all properties of logarithms
14.2 Derivatives of Products and Quotients
● The Product and Quotient Rules
 ● Use the product rule to find the derivative of a function in the form f(x)g(x)
 ● Use the quotient rule to find the derivative of a function in the form f(x)/g(x)
 ● Use the product rule to find the derivative of a function in the form f(x)g(x)h(x)
 ● Combine the product and quotient rules with polynomials
• The Product and Quotient Rules with Exponential Functions
 • Use product and quotient rules to find the derivative of exponential functions with base e
 • Use product and quotient rules to find the derivative of exponential functions with any base

14.3 The Chain Rule
• Using the Chain Rule
 • Use the chain rule with the power rule
 • Use the chain rule with the product and quotient rules

14.4 Implicit Differentiation
• Use Implicit Differentiation
 • Use implicit differentiation
 • Use implicit differentiation and the product rule
 • Use implicit differentiation to find the equation of a tangent line

14.5 Related Rates
• Related Rates for Volume or Area Problems
 • Use related rates to solve problems involving volume
 • Use related rates to solve problems involving area

• Related Rates in Other Applications
 • Use related rates to solve problems involving distance
 • Use related rates to solve problems involving angles or shadows

14.6 Elasticity of Demand
• Relative Rate of Change and Elasticity of Demand
 • Find the relative and percentage rate of change of a function
 • Compute elasticity of demand
 • Interpret elasticity of demand

Chapter 15: Graphing and Optimization
15.1 First Derivative and Graphs
• First Derivative Test
 • Understand the relationship between the graph of a function and the sign of its derivative
 • Use the first derivative test to find local extrema from a graph
 • Use the first derivative test to find local extrema given a function

• The Graph of the Derivative Function
 • Estimate the value of a derivative at a point on a graph using a tangent line
 • Determine the open intervals where the first derivative is positive or negative from a graph
 • Determine the graph of the derivative function given the graph of a polynomial function
15.2 Second Derivative and Graphs
- Concavity and the Second Derivative Test
 - Determine concavity and find the inflection points from a graph of f(x)
 - Determine concavity and find the inflection points given a function
 - Use the second derivative test to find local extrema given a function

15.3 L'Hospital's Rule
- Using L'Hospital's Rule
 - Apply L'Hospital's Rule in the 0/0 case
 - Apply L'Hospital's Rule in the (infinity/infinity) case
 - Determine when to apply L'Hospital's Rule

15.4 Curve Sketching Technique
- Sketch the Curve of a Function
 - Sketch the graph of a polynomial
 - Sketch the graph of a rational function
 - Sketch the graph of a function with a cusp

15.5 Absolute Maxima and Minima
- Extreme Value Theorem and Absolute Extrema
 - Understand the extreme value theorem
 - Locate local and absolute extrema from a graph
 - Locate critical points using derivatives
 - Locate absolute extrema

15.6 Optimization
- Applied Optimization Problems
 - Maximize or minimize area or volume
 - Minimize travel time
 - Maximize revenue
 - Minimize surface area
- Optimization Problems in the Abstract
 - Maximize the area of an inscribed rectangle
 - Maximize and minimize quantities given an expression with two variables
 - Minimize distance of a function to a point
- Optimization of Lot Size and Quantity
 - Find the economic lot or economic order quantity size which minimizes total cost

Chapter 16: Integration
16.1 Antiderivatives and Indefinite Integrals
- Antiderivatives and the Integral
 - Find the antiderivative of a function
 - Understand integral notation and verify an indefinite integral
- Understand the properties of indefinite integrals
- Evaluate indefinite integrals involving constants or powers

16.2 Integration by Substitution
- Substitution and the Power Rule
 - Use substitution to find an indefinite integral with the power rule
 - Use substitution to evaluate a definite integral with the power rule

16.3 Differential Equations; Growth and Decay
- Basics of Differential Equations
 - Verify a solution of a differential equation
 - Identify the order of a differential equation
- Linear Differential Equations
 - Find a general solution to a linear differential equation
 - Find a particular solution to a linear differential equation
- Initial Value Problems
 - Verify a solution to a differential equation initial value problem
 - Solve a differential equation initial value problem
 - Solve applications of differential equation initial value problems
- Creating Direction Fields
 - Create a direction field for a first-order differential equation
 - Sketch a solution curve given a direction field
- Euler's Method
 - Use Euler's method to approximate the solution of a differential equation
- Differential Equations for Growth and Decay
 - Model and solve growth and decay applications with differential equations

16.4 The Definite Integral
- Left and Right Riemann Sums
 - Approximate the area under a curve using left-endpoint approximation
 - Approximate the area under a curve using right-endpoint approximation
- Midpoint and Trapezoid Rule
 - Approximate the area under a curve using midpoint approximation
 - Approximate the area under a curve using trapezoidal approximation
- Defining Definite Integrals
 - Explain the terms integrand, limits of integration, and variable of integration, and describe when a function is integrable
 - Evaluate an integral using the definition of the definite integral and left- or right-endpoint approximations
- Calculating Definite Integrals with a Geometric Approach
 - Use a geometric formula to calculate a definite integral
 - Calculate net signed areas under a line using formulas for area of a triangle
 - Calculate total area under a function using geometric formulas
• Properties of the Definite Integral
 ● Use the properties of the definite integral

16.5 The Fundamental Theorem of Calculus
• Integrals and Derivatives with the Fundamental Theorem of Calculus
 ● Use the Fundamental Theorem of Calculus to find the derivative of an integral function
 ● Use the Fundamental Theorem of Calculus and the chain rule to find a derivative
 ● Use the Fundamental Theorem of Calculus with two variable limits of integration
• Evaluating Definite Integrals with the Fundamental Theorem of Calculus
 ● Evaluate definite integrals with the Fundamental Theorem of Calculus for functions with positive integer exponents
 ● Evaluate definite integrals with the Fundamental Theorem of Calculus for functions with rational exponents
 ● Evaluate definite integrals with the Fundamental Theorem of Calculus and the power rule by simplifying
• Average Value of a Function
 ● Find the average value of a function over an interval

Chapter 17: Additional Integration Topics
17.1 Area Between Curves
• Finding the Area of a Region Bounded by Two Curves
 ● Find the area of a region between two linear functions
 ● Find the area of a region bounded between a linear function and another function
 ● Find the area of a region bounded between two curves
• Finding the Area of Compound Regions
 ● Find the area of a region bounded by two functions that cross
 ● Find the area of a region bounded above by two different functions
• Applications of Area Between Curves
 ● Find and interpret the Gini index

17.2 Volume of Revolution
• Volume Using the Disk Method
 ● Use the disk method to find the volume of a solid of revolution around the x-axis with polynomials or roots

17.3 Applications in Business and Economics
• Income Streams
 ● Find the total income for a continuous stream
 ● Find the present value of a continuous stream
 ● Find the future value of a continuous stream
17.4 Integration by Parts
- Basic Integration by Parts with Indefinite Integrals
 - Use integration by parts when u and v are given
 - Use integration by parts for indefinite integrals

17.5 Integration Using Tables
- Integration Tables
 - Use a formula from an integration table to evaluate an integral
- Integration with Computer Algebra Systems
 - Use a computer algebra system to evaluate an integral
- Reduction Formulas
 - Use a table with reduction formulas to evaluate an integral

Chapter 18: Multivariable Calculus
18.1 Functions of Several Variables
- Introduction to Multivariable Functions
 - Evaluate a multivariable function
 - Sketch a point in three-dimensional space
 - Graph cross sections of a multivariable function

18.2 Partial Derivatives
- Partial Derivatives of a Function of Two Variables
 - Find the partial derivative of a function of two variables
 - Estimate the partial derivative of a function at a point from a graph or contour map
- Total Differential
 - Use the differential to approximate the change in a function given the change in the inputs or to calculate maximum error
- Partial Derivatives of a Function of Three or More Variables
 - Find the partial derivative of a function of three variables
- Higher Order Partial Derivatives
 - Find the higher order partial derivatives of a function of two variables
- The Chain Rule for Functions of Several Variables
 - Use the chain rule for one independent variable
 - Use the chain rule for two independent variables
 - Use the generalized chain rule
18.3 Maxima and Minima
- Critical Points and the Second Derivative Test for Functions of Two Variables
 - Find critical points of a function of two variables
 - Use the second derivative test to classify critical points of a function of two variables
- Absolute Extrema and Applications for Functions of Two Variables
 - Find the absolute extrema of a function of two variables on a closed region
 - Solve maximization and minimization word problems with multiple variables

18.4 Maxima and Minima Using Lagrange Multipliers
- Lagrange Multipliers with One Constraint
 - Use Lagrange multipliers to find maximum and minimum values of a function of two variables with a single constraint
 - Use Lagrange multipliers to find maximum and minimum values of a function of three variables with a single constraint
- Lagrange Multipliers with Two Constraints
 - Use Lagrange multipliers to find maximum and minimum values of a function with two constraints

18.5 Double Integrals over Rectangular Regions
- Iterated Integrals and Properties of Double Integrals
 - Recognize and use some of the properties of double integrals
 - Evaluate a double integral over a rectangular region by writing it as an iterated integral
 - Evaluate a double integral over a rectangular region by reversing the order of integration
- Applications of Double Integrals Over Rectangular Regions
 - Find the volume under a surface
 - Find the average value of a function over a rectangular region

18.6 Double Integrals over More General Regions
- Double Integrals Over Nonrectangular Regions
 - Recognize when a function of two variables is integrable over a general region
 - Evaluate a double integral by computing an iterated integral over a region bounded by two lines and two functions
- Double Integrals by Decomposing Regions or Changing the Order of Integration
 - Evaluate a double integral over a more complex region by decomposing the region
 - Simplify the calculation of an iterated integral by changing the order of integration
- Applications of Double Integrals Over General Regions
 - Use double integrals to calculate the area of a general plane region
 - Use double integrals to calculate the volume of a region between two surfaces over a general plane region
 - Find the average value of a function over a general region
Chapter 19: Trigonometric Functions

19.1 Trigonometric Functions Review

- Angles as Rotations and Radian Measures
 - Identify the measure of positive and negative angles in standard position and the quadrant of the terminal side
 - Convert between degree and radian measure of an angle
 - Understand when two angles are coterminal

- The Six Trigonometric Ratios
 - Use right triangles to evaluate sin, cos, and tan functions
 - Evaluate reciprocal trig functions using right triangles or a sin, cos, or tan function

- Sine and Cosine Values in the First Quadrant
 - Understand sin and cos values on the unit circle
 - Find exact sin and cos values for angles in the first quadrant of the unit circle

- Sine and Cosine Values with Reference Angles and a Calculator
 - Find the reference angle for a given angle
 - Use reference angles to evaluate sin and cos functions
 - Use reference angles to find coordinates on the unit circle
 - Evaluate sin and cos functions with a calculator

- The Other Trigonometric Ratios on the Unit Circle
 - Find the sec, csc, tan, and cot values for angles in the first quadrant of the unit circle
 - Use reference angles to evaluate sec, csc, tan, and cot functions
 - Evaluate trigonometric functions with a calculator

- Use Given Trigonometric Ratios to Find Other Ratios
 - Understand the relationship between the quadrant in which an angle falls and the signs of the trig functions of that angle
 - Use the pythagorean identity
 - Find the values of all trigonometric functions given coordinates on a unit circle
 - Find the values of all trigonometric functions given the value of one trigonometric function

- Characteristics of Sin and Cos Graphs
 - Graph the sin function and understand its properties
 - Graph the cos function and understand its properties

- Applications of Trigonometric Functions
 - Use sinusoidal functions to solve real-world applications

19.2 Derivatives of Trigonometric Functions

- Derivatives with Trigonometric Functions
 - Find the derivative of a function with sine or cosine
 - Use the product or quotient rule to find a derivative with sine or cosine
 - Use the chain rule with trigonometric functions

- Applications of Trigonometric Derivatives
 - Compute derivatives of trigonometric functions in application problems
19.3 Integration of Trigonometric Functions

- Integration with Trigonometric Functions
 - Evaluate indefinite integrals involving trigonometric functions
 - Evaluate definite integrals involving trigonometric functions
 - Compute integrals of trigonometric functions in application problems

Chapter 20: Differential Equations

20.1 Separation of Variables

- Finding Differential Equation Solutions using Separation of Variables
 - Find a general solution to a differential equation composed of two polynomials using separation of variables
 - Find a specific solution to a differential equation composed of two polynomials using separation of variables
- Application Problems using Separation of Variables
 - Solve solution concentration problems using separation of variables
 - Solve Newton's law of cooling problems using separation of variables

20.2 First-Order Linear Differential Equations

- Recognizing and Solving First-order Linear Differential Equations
 - Identify first-order linear differential equations
 - Write first-order linear differential equations in standard form
 - Solve a first-order linear differential equation using an integrating factor
- Applications of First-order Linear Differential Equations
 - Solve first-order differential equation problems about compound interest
 - Solve first-order differential equation problems involving equilibrium price

Chapter 21: Taylor Polynomials and Sequences and Series

21.1 Taylor Polynomials

- Taylor and Maclaurin Polynomials
 - Recognize a Taylor series
 - Find the Taylor polynomials for a function at a value

21.2 Taylor Series

- Representing Functions with Taylor and Maclaurin Series
 - Represent a function at a value with a Taylor series and determine the interval of convergence
 - Find the Maclaurin series for a function and show that the series converges

21.3 Operations on Taylor Series

- Finding the Maclaurin Series that Represents a Function
 - Find the Maclaurin series for a trigonometric function
 - Find the Maclaurin series for a logarithmic or exponential function
 - Find a Maclaurin series by differentiating another series
21.4 Approximations Using Taylor Series

- Estimating Function Values with Taylor and Maclaurin Series
 - Find the Maclaurin polynomials for a function
 - Estimate a function value using Taylor polynomials
 - Determine the error of an estimated function value using Taylor’s theorem
 - Estimate a trigonometric function value using Maclaurin polynomials
- Alternating Series and the Alternating Series Test
 - Determine if an alternating series converges or diverges using the alternating series test
 - Estimate the remainder of an alternating series
 - Determine whether a series converges absolutely or conditionally

21.5 Sequences and Series

- Geometric Sequences
 - Find the common ratio of a geometric sequence
 - Write terms of a geometric sequence
 - Write a recursive formula for a geometric sequence
 - Write an explicit formula for a geometric sequence
- Applications of Series
 - Solve application problems with arithmetic series
 - Solve application problems with geometric series
 - Find the equivalent fraction for a repeating decimal
 - Solve an annuity problem
- Finite and Infinite Geometric Series
 - Find the sum of a finite geometric series
 - Determine if the sum of an infinite series is defined
 - Find the sum of an infinite geometric series
- Newton's Method
 - Use Newton's method to approximate the root of a polynomial
 - Use Newton's method to approximate a square root
 - Determine when Newton's method does not work

Chapter 22: Probability and Calculus

22.1 Improper Integrals

- Improper Integrals over Infinite Intervals
 - Evaluate an improper integral over an infinite interval
 - Evaluate an improper integral from negative infinity to positive infinity

22.2 Continuous Random Variables

- Probability Density Functions
 - Understand the properties of probability density functions
 - Compute probability using a continuous probability density function
• Cumulative Distribution Functions
 • Understand the properties of a cumulative distribution function
 • Find the cumulative distribution function given a probability density function

22.3 Parameters of Continuous Random Variables
• Mean and Median of a Probability Density Function
 • Find the mean of a continuous probability density function
 • Find the median of a continuous probability density function
• Other Parameters of Probability Density Functions
 • Find the variance and standard deviation of a continuous probability density function

22.4 Special Probability Distributions
• Uniform Distribution
 • Compute probability using the uniform distribution
 • Compute the mean, median, and standard deviation of the uniform distribution
• Exponential Distribution
 • Compute probability using the exponential distribution
 • Compute the mean, median, and standard deviation of the exponential distribution
• Normal Distribution
 • Understand the notation and interpret the parameters of a normal distribution
 • Compute z-scores and use them to compare values from different data sets
 • Use a table to find probabilities in a normal distribution